Sepistatud terasest kõrge temperatuuriga kõrgsurvega madala pöördemomendiga trunnion paigaldatud kuulkraan Hiina tehas
Mis on sepistatud terasest käiguga kuulventiil?
A Sepistatud terasest kuulventiiltähendab, et kuul on piiratud laagritega ja sellel on lubatud ainult pöörlema, suurema osa hüdraulilisest koormusest toetavad süsteemi piirangud, mille tulemuseks on madal laagrirõhk ja võll ei väsi.
Torujuhtme rõhk surub ülesvoolu asuva pesa vastu statsionaarset kuuli, nii et liini rõhk sunnib ülesvoolu pesa kuulile, põhjustades selle tihendamise.Kuuli mehaaniline ankurdamine neelab torurõhust tuleneva tõukejõu, vältides liigset hõõrdumist kuuli ja istmete vahel, nii et isegi täisnimitöörõhul jääb töömoment väikeseks.See on eriti kasulik kuulventiili käivitamisel, kuna see vähendab täiturmehhanismi suurust ja seega ka klapi käitamispaketi üldkulusid.Käru on saadaval kõikidele suurustele ja kõikidele surveklassidele, kuid need on mõeldud peamiselt suurte suuruste ja kõrge rõhu tingimustes
NORTECHi sepistatud terasest kuulventiili peamised omadused
1. Double Block and Bleed (DBB)
Kui klapp on suletud ja keskmine õõnsus tühjendatakse läbi tühjendusklapi, blokeeruvad üles- ja allavoolu istmed iseseisvalt.Tühjendusseadme teine funktsioon on see, et klapipesa saab kontrollida, kui katse ajal esineb leke.Lisaks saab kere sees olevaid ladestusi pesta läbi tühjendusseadme.Tühjendusseade on loodud selleks, et vähendada istme kahjustamist keskkonnas leiduvate lisandite poolt.
2.Madal töömoment
Käigutoru torujuhtme kuulventiil võtab kasutusele karbi kuulikonstruktsiooni ja ujuva klapipesa, et saavutada töörõhu all väiksem pöördemoment.See kasutab isemäärivat PTFE-d ja metallist liuglaagrit, et vähendada hõõrdetegurit madalaimale koos suure intensiivsusega ja kõrge peenusega varrega
11. Väljapuhumiskindel vars
Vars kasutab väljapuhumiskindlat struktuuri. Vars on konstrueeritud nii, et samm on selle põhjas, nii et ülemise otsa katte ja kruvi paigutusega ei puhu vars välja isegi ebanormaalse rõhutõusu korral. klapi õõnsus.
Väljapuhumiskindel vars
4.Fireproof Structure Design
Kui klapi kasutamise ajal süttib tulekahju, laguneb või kahjustab PTFE-st valmistatud pesarõngas, varre O-rõngas ja keskmise ääriku O-rõngas kõrgel temperatuuril kõrgel temperatuuril. ventiil surub istme kinnitust kiiresti kuuli poole, et metallist tihendirõngas puutuks kuuliga kokku ja moodustaks metallist metallile lisatihendi, mis võib tõhusalt kontrollida klapi leket. Torujuhtme kuulventiili tulekindla konstruktsiooni konstruktsioon vastab API nõuetele 607, API 6FA, BS 6755 ja muud standardid.
5. Antistaatiline struktuur
Kuulkraan on konstrueeritud antistaatilise konstruktsiooniga ja kasutab staatilise elektri lahendusseadet, et moodustada otse staatiline kanal kuuli ja kere vahel läbi varre, et tühjendada staatiline elekter, mis tekib hõõrdumise tõttu avamise ja sulgemise ajal. pall ja iste läbi torujuhtme, vältides staatilisest sädemest põhjustatud plahvatuspõlengut ja tagades süsteemi ohutuse.
6. Usaldusväärne istme tihendusstruktuur
Istme tihend on teostatud kahe ujuva istmehoidiku kaudu. Need võivad vedeliku blokeerimiseks aksiaalselt hõljuda, sealhulgas kuultihend ja korpuse tihend. Klapipesa madalrõhutihendus saavutatakse eelpingutatud vedruga. Lisaks on klapipesa kolviefekt on korralikult konstrueeritud, mis tagab kõrgsurvetihendi keskkonna enda rõhu abil. Võimalik on teostada järgmist kahte tüüpi kuultihendust.
7.Ühekordne tihendus
(Automaatne rõhuvabastus klapi keskmises õõnsuses) Üldiselt kasutatakse ühte tihendusstruktuuri. See tähendab, et seal on ainult ülesvoolu tihendus.Kuna kasutatakse sõltumatuid vedruga koormatud üles- ja allavoolu tihenduspesasid, saab klapiõõnsuses tekkiv ülerõhk ületada vedru eelpingutusefekti, nii et pesa vabastatakse kuulist ja saavutatakse automaatne rõhu vähendamine allavoolu osa suunas. .Ülesvoolu pool: kui pesa liigub aksiaalselt piki ventiili, tekitab ülesvooluosale (sisselaskeavale) avaldatav rõhk "P" vastupidise jõu A1-le, kuna A2 on suurem kui A1, A2-A1=B1, B1 surub istme kuuli külge ja tagab ülesvooluosa tiheda tihendamise
Allavoolu pool: kui rõhk "Pb" klapiõõnes suureneb, on A3-le avaldatav jõud suurem kui A4-le.Kuna A3-A4=B2, ületab B2 rõhuerinevus vedrujõu, vabastades pesa kuulist ja vabastades seejärel klapiõõnsuse rõhu allavoolu, pesa ja kuul suletakse uuesti vedru toimel. .
8. Topelttihend (topeltkolb)
Torujuhtme kuulventiili saab konstrueerida topelttihenduskonstruktsiooniga enne ja pärast kuuli teatud eritingimuste ja kasutajanõuete jaoks.Sellel on topeltkolviefekt.Tavaolukorras kasutab ventiil üldiselt esmast tihendit. Kui esmane pesa meid kahjustab ja põhjustab leket, võib sekundaarne pesa täita tihendusfunktsiooni ja suurendada tihendi töökindlust.istmel on kombineeritud struktuur. Esmane tihend on metallist metallist tihend. Teisene tihend on fluorkummist O-rõngas, mis tagab kuulventiili jõudmise mullitaseme tihendini.Kui rõhu erinevus on väga madal, surub tihenduspesa palli läbi vedru, et saavutada esmane tihend.Kui rõhuerinevus tõuseb, suureneb istme ja kere tihendusjõud vastavalt, et tihendada istme ja kuul tihedalt ning tagada hea tihendusvõime.
Esmane tihendus: ülesvoolu.
Kui rõhuerinevus on madalam või rõhuerinevus puudub, liigub ujuvpesa vedru toimel aksiaalselt piki ventiili ja surub istet tiheda tiheduse tagamiseks kuuli poole.Kui klapipesa on suurem kui alale A1, A2- A1=B1 mõjuv jõud. Seetõttu surub B1-s olev jõud pesa kuuli poole ja tagab ülesvooluosa tiheda tihendamise.
9. Ohutuskaitseseade
Kuna kuulventiil on konstrueeritud täiustatud primaarse ja sekundaarse tihendiga, millel on topeltkolviefekt ja keskmine õõnsus ei suuda automaatset rõhulangetust realiseerida, tuleb kaitseklapp paigaldada korpusele, et vältida ülerõhu kahjustuste ohtu. klapiõõnsuse sees, mis võib tekkida keskkonna termilise paisumise tõttu. Kaitseklapi ühendus on üldiselt NPT 1/2.Veel üks punkt, mida tuleb märkida, on see, et kaitseklapi keskkond juhitakse otse atmosfääri.Juhul, kui otsene väljajuhtimine atmosfääri ei ole lubatud, soovitame kasutada spetsiaalse konstruktsiooniga kuulventiili, millel on automaatne rõhulangus ülemise voolu suunas. Üksikasjalikuma teabe saamiseks vaadake järgmist.Palun märkige see tellimuses, kui te ei vaja kaitseklappi või soovite kasutada spetsiaalse automaatse rõhulangetuse konstruktsiooniga kuulventiili ülemise voolu suunas.
Kuulkraani ülesvoolu ja allavoolu tihenduse põhimõtteline joonis
Kuulkraani õõnsuse rõhu vähendamise põhimõte ülemise voolu ja allavoolu tihendi kohta
12.Korrosioonikindlus ja vastupidavus sulfiidile
Kere seina paksusele on jäetud teatav korrosioonivaru.
Süsinikterasest vars, fikseeritud võll, kuul, pesa ja istme rõngas on nikeldatud keemiliselt vastavalt standardile ASTM B733 ja B656. Lisaks on kasutajate jaoks saadaval erinevad korrosioonikindlad materjalid. Vastavalt kliendi nõudmistele võivad klapimaterjalid tuleb valida vastavalt NACE MR 0175 / ISO 15156 või NACE MR 0103 ning tootmise ajal tuleks läbi viia range kvaliteedikontroll ja kvaliteedikontroll, et see vastaks täielikult standardite nõuetele ja vastaks väävlituskeskkonna kasutustingimustele
NORTECHi sepistatud terasest käiguga kuulventiili spetsifikatsioonid
Trunnioni kuulventiili tehnilised andmed
Nominaalne läbimõõt | 2"–56" (DN50-DN1400) |
Ühenduse tüüp | RF/BW/RTJ |
Disaini standard | API 6D/ASME B16.34/API608/MSS SP-72 kuulkraan |
Korpuse materjal | Valatud teras / sepistatud teras / valatud roostevaba teras / sepistatud roostevaba teras |
Palli materjal | A105+ENP/F304/F316/F304L/F316L |
Istme materjal | PTFE/PPL/NYLON/PEEK |
Töötemperatuur | PTFE puhul kuni 120°C |
| Kuni 250°C PPL/PEEK jaoks |
| Kuni 80°C NYLONI puhul |
Ääriku ots | ASME B16.5 RF/RTJ |
BW lõpp | ASME B 16.25 |
Näost näkku | ASME B 16.10 |
Rõhu temperatuur | ASME B 16.34 |
Tuleohutu ja antistaatiline | API 607/API 6FA |
Ülevaatuse standard | API598/EN12266/ISO5208 |
Ekspositsioonitõend | ATEX |
Operatsiooni tüüp | Manuaalne käigukast/Pneumaatiline ajam/Elektriline ajam |
Tootenäitus: sepistatud terasest käiguga kuulventiil
NORTECHi sepistatud terasest käiguga kuulventiili kasutamine
SellineSepistatud terasest kuulventiilkasutatakse laialdaselt nafta, gaasi ja mineraalide kasutamise, rafineerimise ja transpordisüsteemis.Seda saab kasutada ka keemiatoodete, ravimite tootmiseks;hüdro-, soojus- ja tuumaenergia tootmissüsteem;äravoolusüsteem,